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found good agreement with experiment from 4.2 K 
upward. 

If there is a gap in the magnon spectrum at k = 0, as 
suggested by neutron scattering, the intensity of the 
optical absorption bands should begin to deviate from 
the T2 law as the temperature becomes comparable to 
the gap energy. We therefore measured the sharp 
632-nm band down to the limit of pumped 4He, about 
0.7 K.58 Some of the results, obtained using a nitrogen 
laser pumped tunable dye laser59 are shown in Figure 
9. The sharp band at  631.3 nm, which dominates the 
band envelope at 3 K and upward, disappears rapidly 
below 1 K and can be quantitatively fitted to a gap 
energy equivalent to 1.0-1.5 K. 

From these experiments we now have a good picture 
of the crystal and magnetic structures of the chloro- 
chromates, the reasons why they are ferrmagnetic, and 
the effect this has on their optical properties. Although 
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Denning, t o  be published. 

they are the most visible transparent ferromagnets 
known at  present, their relatively low Curie tempera- 
tures will limit technological application of their curious 
properties, whether to optical modulation or to mag- 
netic data storage with optical readout. Nevertheless 
they have provided intriguing problems for magnetic 
theory and an object lesson in applying a wide range 
of physical techniques. A further dimension of chemical 
variation, only touched on in this account, concerns 
replacement of the alkali metal cations by organic 
groups, increasing the spacing between the layers up to 
as much as 25 A.20 With their simpler prototypes they 
too are good examples of how preparative inorganic 
chemistry can bring forward new systems to challenge 
the skills both of the experimental and of the theoretical 
physicist. 

T h e  experiments described here were carried out i n  collab- 
oration wi th  many  colleagues, postdoctorates, and graduate 
students whose names appear i n  the references; m y  best thanks  
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Science Research Council, A.E.R.E. Harwell, and the National 
Research Development Corporation. 
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A t  equilibrium the three laws of thermody- 
namics-energy conservation, entropy maximization, 
and the inaccessibility of absolute zero-are the basis 
for understanding many relationships between ex- 
perimental quantities.2 Unfortunately, many of these 
relationships are valid only at  equilibrium, since the 
Second Law is valid only for changes which end up at 
equilibrium. 

In fact, a central problem in physical chemistry is 
this: Does there exist a generalization of the Second 
Law which is valid away from equilibrium? This is an 
old question having its origins in Boltzmann’s work in 
gas  kinetic^,^ and many attempts have been made at  
answering it? In this Account, I will discuss a solution 
to this problem which is based on the dynamics of 
molecular  fluctuation^.^ These fluctuations are caused 
by the relentless motion involved in molecular processes 
and are intimately related to the stability of none- 
quilibrium systems. 

The chief focus of this Account is nonequilibrium 
steady states6 of large collections of molecules. These 
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are states which have time-independent properties, even 
though mass, energy, or momentum is being trans- 
ported through the system. Such states are in many 
ways like equilibrium states, yet they cannot be de- 
scribed by classical thermodynamics. Simple examples 
are the steady flow of fluid through a pipe or the steady 
dc current in an electrical resistor. More intricate, and 
fascinating, examples include systems which become 
unstable or begin to oscillate as the steady state is 
removed farther from equilibrium. Typical of these 
systems are the roll structure of BBnard cells in a layer 
of fluid heated from below,7 oscillating colors due to 
periodic changes in indicator concentrations in the 
Belousov reaction? or the periodic voltage and shape 
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changes caused by changing surface tension in the 
“beating mercury heart”.g 

Although these instabilities have complicated kinetic 
descriptions, many of their features are illustrated by 
an instability which can occur in certain redox elec- 
trodes.1° In Figure 1 is a schematic diagram of an 
electrode which has a negative differential resistance. 
This may be caused by the electrodesorption of a 
critical intermediate in the redox processll or the 
coverage of the electrode by a passive film.12 Using 
simple circuit theory, the rate of change of the voltage, 
V, across the electrode is given by13 

(1) 

where C is the electrode capacitance, R the external 
resistance, E the external voltage drop, and i(V) the 
redox current. A steady state occurs when the voltage 
is independent of time. This means that dV/dt = 0, 
so eq 1 implies that 

( 2 )  

Equation 2 determines the voltage, V”, at steady state. 
This voltage can also be determined graphically in 
Figure 1 by looking for the intersections of the left- and 
right-hand sides of eq 2. Assuming that E is as shown 
in the figure, there can be three distinct situations. At 
low resistance Vss = E and there is only one steady 
state; a t  intermediate resistance there are three steady 
states; and, finally, a t  very high resistance again only 
one state. These are all nonequilibrium states unless 
the resistance is infinite, when the electrode receives 
no current from the external voltage source. In the 
equilibrium state no current flows, and the elementary 
processes of reduction and oxidation on the electrode 
are in balance. 

As the resistance in the external circuit is increased, 
a “phase transition” like behavior appears in the 
voltage. This is because the voltages in the negative 
resistance region are unstable. This means that a 
voltage which is close to the steady-state value will not 
stay close to steady state but, like a pencil balanced on 
its point, move away.14 This can be seen mathemat- 
ically by looking at  how a deviation, from steady state, 
u = V- Vss, which is small (Iul << V 9 ,  changes in time. 
Equation 1 and the Taylor series expansion 

CdV/dt = ( E  - V)/R - i(V) 

( E  - VS”//R = i( V89) 

i(V) = i(v + Vss) = i ( V 9  + (ai/aV)ssu + ... 
give 

Cdu/dt = ( E  - VSs)/R - u/R - i ( V 9  - (ai/aV)% + 
... 

But eq 2 shows that the first and third terms cancel, 
so a small deviation satisfies where 

du/dt = Hv 
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2 and 26. 

H = -C-’(l/R + (c3i/c3V)”) ( 3 )  
Equation 3 gives the “linear stability analysis” of the 
steady state,14 and the relaxation rate of the voltage is 
given by the quantity H. This equation has the ex- 
ponential solution 

u ( t )  = exp(Ht)u(O) 
where u(0) is the deviation at  t = 0. This result is the 
key to linear stability analysis: because of the expo- 
nential, the initial deviation decreases to zero as time 
goes on when H C 0 but explodes to infinity when H 
> 0. Consequently the state is stable under the first 
condition but unstable under the second. Comparing 
Figure 1 and the definition of H shows that the steady 
states with a negative resistance are unstable. This is 
so since the slope of the straight line is - l /R ,  which is 
smaller in magnitude than the slope (ai/awss of the dc 
current curve. 

The instability gives rise to the abrupt transitions 
indicated by the arrows in Figure 2. This figure is 
constructed from Figure 1 by increasing the resistance, 
as shown by the decreasing slope of the three straight 
lines. Figure 2 shows the voltage a t  steady state as a 
function of the external resistance and the hysteresis 
which occurs because of the instability in the negative 
resistance region. The loop is like the van der Waal’s 
loop which occurs in a liquid-gas-phase transition,l5>l6 
but cannot be analyzed with thermodynamics since i t  
does not occur at  equilibrium. 
Stability and Liapunov Functions 

A general feature seen in the preceding example is 
that a steady state may become unstable as it is taken 
farther and farther from equilibrium. The linear 
stability analysis used in that example is only one of 
several ways to determine ~tabi1ity.l~ Indeed, for 
systems with many variables the linear analysis becomes 
tedious since many exponentials are involved in the 
solution to the kinetic equations. In fact, one must solve 
a matrix eigenvalue problem that has the dimension of 
the number of variables. 

A much simpler alternative for examining the sta- 
bility of steady states was developed by Liapunov in the 
late 19th century.14 Liapunov looked a t  positive 
functions q5 of the state variables which vanish at  the 
steady state. Such a function acts like a distance 
function-measured with respect to the steady state. 
Liapunov proved that if near the steady state this 
function decreases as time goes on, then the steady state 
is stable. Functions q5 that have this property are called 
“Liapunov functions”. Liapunov also showed that if 
instead the function $J increased in time, the state was 
unstable. 

For the electrochemical example in Figure 1 these 
results are illustrated by the function @(u) = v2/a, where 
c is a positive constant. This function is positive and 
vanishes only when v = V - Vs5 = 0. Using the chain 
rule to differentiate u2 gives eq 4, where eq 3 is used in 

(4) 

the last equality. By definition, q5 will be a Liapunov 

dp/dt = (2v/a)dv/dt = 2u2H/Cc 

(16) R. Landauer, J .  Appl .  Phys., 33, 2209 (1962). 
(16) A. Nitzan, P. Ortoleva, J. Deutch, and J. Ross, J .  Chem. Phys., 

61, 1056 (1974), and references therein; J. Keizer, Proc. Natl. Acad. Sci. 
U.S.A., 75,3023 (1978); D. Bedeaux, P. Mazur, and R. Pasmanter, Physica, 
86A, 355 (1977). 



Vol. 12, 1979 Nonequilibrium Thermodynamics 245 
E-V 

d ‘E  
h o w  

E 
V 

VOLTAGE 

EMF 

Figure 1. Schematic graph of current vs. voltage with circuit 
diagram inset for an electrode with a negative differential re- 
sistance. The straight lines represent (E  - V ) / R  for three values 
of R. The intersections are the steady states with the circles stable 
and the star unstable. 
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Figure 2. First-order phase-transition-like behavior for the 
electrode in Figure 1. The van der Waals type loop shows 
hysteresis a t  the minimum and maximum as the resistance is 
decreased and then increased. 

function for the steady state if dq5 /dt  C 0. Since v2/ CCT 
is never negative, this will be the case whenever H C 
0. Liapunov’s theorem then implies that the steady 
state is stable whenever H C 0. Similarly, eq 4 implies 
the inequality dq5 /dt  > 0 for steady states with H > 0. 
Again by Liapunov’s theorem such states are unstable. 
These are precisely the conditions for stability obtained 
by the linear stability analysis of this problem, which 
verifies Liapunov’s theorem for this example. 

I t  is worth adding a caveat about the use of Liapu- 
nov’s theorem. Just because a given positive function 
has a time derivative of mixed sign (positive for some 
deviations and negative for others), this in no way 
“threatens” stability. Indeed, for a given positive I$, the 
Liapunov criterion dq5 /dt  C 0 is sufficient to imply 
stability, but not necessary. Consequently its violation 
in the form dq5 /dt  > 0 implies nothing. 

Failure of the Local Equilibrium Theory Far 
from Equilibrium 

A valid extension of classical thermodynamics which 
works very close to equilibrium involves local equi- 
librium thermodynamic functions. For example, in an 
ideal gas undergoing the chemical reaction H2 + D2 = 

2HD, the chemical potential of hydrogen id7 
PHz = P0Hz + hBT In PHz ( 5 )  

with kB Boltzmann’s constant, T the absolute tem- 
perature, pH2 the number density of H2, and p o H 2  the 
standard-state chemical potential. Even though such 
a gas, evidently, has three independent molecular 
species (H2, D2, and HD), equilibrium thermodynamics 
involves only two independently variable densities.2 
This is because the condition of equilibrium determines 
one of the densities once the other two are known. 
Nevertheless, the Second Law involves the local 
equilibrium thermodynamic functions, and changes in 
the Helmholtz free energy at constant temperature and 
volume are written 

dA = CLH~~NH~ + PDzdNDz + PHDdNHD (6) 

In eq 6 the N s  are the number of the subscripted 
molecules and the chemical potentials are the local 
equilibrium ones as in eq 5 .  Equation 6 involves an 
extension of thermodynamics to a state just slightly out 
of equilibrium and is used, for example, in showing17 
that the thermodynamic form of the equilibrium 
constant is 

pe2HD/peH2peD2 = exP([PoH2 + PODz - 2P0HD1/kBT)  

The success of the local equilibrium theory close to  
equilibrium might suggest that it can also be used in 
the neighborhood of far from equilibrium steady 
states.l* A little reflection shows this hope to be vain 
since there is no Second Law or maximum principle for 
the usual thermodynamic functions near steady state. 
In fact, what is needed at  steady state is a Liapunov 
function since that is exactly what the Second Law 
provides a t  equilibrium. 

That the entropy is a stability function actually 
preceded Liapunov’s work and is found already in 
Boltzmann’s H t h e ~ r e m . ~  However, its occurrence in 
local equilibrium thermodynamics was pointed out by 
Glansdorff and Prigogine.18 Their ideas concerned the 
second differential of the local equilibrium entropy, 6 2S. 
This is nothing more than the quadratic term in a 
Taylor series expansion of the entropy around equi- 
librium, viz. 
S(nl,n2,...,nk) = S(nle,n2e,...,nke) +C(aS/anz)eaz + 

1 

= se + 6s + (1/2)62S + ... 
where ni is an extensive variable, nie is its equilibrium 
value, and ai = ni - n?. Because the entropy is max- 
imized at  equilibrium, 6s is identically zero and 

62s I 0 (8) 
(that is, S I Se for a maximum). The Second Law of 
thermodynamics, namely the increase of the entropy 
dS/dt 2 0, can thus be written close to equilibrium 
using eq 7 as 

dfi2S/dt 1 0  (9) 

(17) T. L. Hill, “Statistical Thermodynamics”, Addison-Wesely, Reading, 
MA, 1960, Chapter 10. 
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This means that the quadratic form -S2S is positive and 
vanishes at  equilibrium (where ai 0) and that 
-d62S/dt 5 0. Hence the second differential of the local 
equilibrium entropy is a Liapunov functionls-at least 
very close to equilibrium. 

The attempts18 to use the local equilibrium entropy 
as a central principle far from equilibrium failed.lg 
Mathematically this failure is due to the fact that 
Liapunov’s theorem provides only a sufficient condition 
for stability.14J9 Consequently even though 6?S may not 
be a Liapunov function, this in no way affects the 
stability of a state. This situation often occurs because 
the sign of d62S/dt can be either positive or negative 
far from equilibrium.z0 The attempt to use a local 
equilibrium theory far from equilibrium also fails on 
physical grounds. This is because it relies on the form 
of a thermodynamic function, the entropy, which has 
no Second Law associated with it far from equilibrium. 
Molecular Fluctuations 

A different attack on the problem of thermodynamic 
functions away from equilibrium is based on molecular 
fluctuations. These fluctuations are the incessant small 
variations of physical quantities in time and space 
caused by molecular motion. Fluctuations occur even 
in systems that are a t  thermodynamic equilibrium and 
were first noticed by Brownz1 in 1827. Using a light 
microscope Brown observed that pollen grains in a drop 
of water move about in a strange, chaotic manner. The 
cause of this motion was not explained conclusively 
until Einstein’s famous work 80 years later. Einstein 
attributed the jagged paths to random fluctuations in 
the number and direction of collisions between the 
water molecules and the molecules of the Brownian 
particle. His quantitative predictions were soon verified 
by Perrin and lead, among other things, to an inde- 
pendent measurement of Avogadro’s number. 

Because collisions underlie all phenomena involving 
collections of molecules, it should be clear that  all 
physical quantities fluctuate in a large system. For 
example, the reaction Be’+ + SO?- = BeS04 in aqueous 
solution involves molecular encounters mediated by 
HzO. Although chemists are accustomed to thinking 
that the concentrations of these species do not change 
a t  equilibrium, this is true only on the average. At any 
instant of time, the details of the ongoing molecular 
encounters will dictate how beryllium is distributed 
between its ionic and molecular forms. Thus the 
chemical reaction leads to fluctuations in the concen- 
trations of Be2+, Sod2-, and BeS04. Although small, 
these fluctuations are observable and have been 
measured by means of the fluctuating current which 
they produce in an electrolytic Similarly the 
instantaneous amount of solute in a fixed region of 
solution is a random function of time a t  equilibrium. 
These sorts of concentration fluctuations are caused by 
the molecular process of diffusion. They have been 
measured quantitatively by using the fluctuating 
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fluorescence induced by a light beam passed through 
solution.z3 

Just as Einstein was able to develop a theory of 
Brownian motion, On~ager , ’~  Landau,25 and othersz6 
have developed a quantitative theory of fluctuations for 
thermodynamic variables a t  equilibrium. In fluids, 
fluctuations in the local internal energy, concentrations, 
and momentum can be observed by light-scattering 
 experiment^.^^ These experiments can be performed 
using light of a given frequency with the angular dis- 
tribution of the scattered light being measured. This 
leads to information about the static fluctuations, which 
describe the variety of thermodynamic environments 
seen by the light ray as it traverses the fluid. The 
dynamic fluctuations, on the other hand, describe how 
a fluctuation relaxes back toward equilibrium and can 
be measured using frequency-dependent light scat- 
tering. 

The theories of thermodynamic fluctuations a t  
equilibrium compare well with the results of light 
scatteringz7 and other  measurement^.^^^^^ There is, 
however, a serious problem in extending the theory 
away from equilibrium. The stumbling block is the fact 
that the theory relies heavily on the Second Law of 
thermodynamics,z6 which does not hold for a driven 
system away from equilibrium. 

Properly generalizing the theory of fluctuations re- 
quires adopting a more explicitly molecular point of 
 vie^.^,^^ This is necessary since, as we have seen, 
fluctuations are caused by the motion of molecules. 
Molecular motion is also responsible for dissipative 
processes such as diffusion, heat transport, and 
chemical reaction. Consequently, it should not be 
surprising that a close relationship exists between 
dissipation and  fluctuation^.^^ 

To see more clearly what this is, consider an ele- 
mentary molecular process. An example familiar to 
chemists is an elementary chemical reaction31 which 
involves direct reactive collisions between molecules. 
Because it is an elementary process, it will involve both 
direct (forward) and restoring (reverse) molecular ev- 
ents. Such a molecular process has a forward rate V+, 
has a reverse rate V-, and will change the extensive 
variable nl by an amount oi. In chemical reactions, for 
example, the ai’s are the stoichiometric coefficients, 
taken positive for products and negative for reactants, 
and nl is the number of molecules of a given kind. The 
rates of an elementary process cause a perpetual in- 
crease in the entropy of a system, except at  equilibrium 
where the forward and reverse rates are equal. This is 
reflected in the fact that the nonlinear generalization 
of Rayleigh’s dissipation function is always positive, 
except a t  equilibrium where it vani~hes.~’ 
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The crucial point here is that these same elementary 
molecular processes determine the fluctuations in a 
system.30 For example, in Langevin’s conception of 
Brownian motion33 collisions cause a particle to move 
by creating a random force on it. This can be rein- 
terpreted using Newton’s law, which states that a force 
is equivalent to the time rate of change of momentum. 
Thus the random force can be thought of as a random 
component of the time derivative of the momentum. 
Similarly the randomness in any_ elementary process will 
produce a random component, f , ,  to the time derivative 
of the extensive variable, n,. For the elementary re- 
action Be2+ + S042- + BeS04 this will produce a 
random term in the rate equation for Be2+ and S042- 
ions. In the fluctuation-disjipation theory: the product 
of these random “forces”, ff , averaged over a short time 
interval is given by eq 105,d0!34 where K labels different 

(10) 

elementary processes and i and j refer to different 
extensive variables. Equation 10 relates the fluctuations 
to the rates of the dissipative process and is a basic 
principle of the fluctuation-dissipation theory. In the 
older theories of equilibrium f l ~ c t u a t i o n s , ~ ~ - ~ ~  the 
strength of the fluctuation term y was deduced from 
a knowledge of the local equilibrium entropy. 

The connection between dissipation and fluctuations 
given in eq 10 and the principle that fluctuations 
around the conditional average are a nonstationary, 
Gaussian process form the basis of the fluctuation- 
dissipation theory of molecular  fluctuation^.^,^^^^ When 
applied at  steady state,6 the theory shows that the 
probability distribution of extensive variables around 
a stable steady state is a Gaussian, or normal, distri- 
bution. The Gaussian is centered at  the steady state 
predicted by the usual kinetic analysis, as described, for 
example, by eq 1 and 2. The width of the Gaussian is 
determined by the fluctuation-dissipation theorem6 

YLJ = C w K L ( v K ‘  + v K - ) w K ]  
K 

H u + u P = - y  (11) 

Equation 11 is a matrix equation with 

ulJ = ( (n ,  - nF)(n, - nJss))ss 

the average square of the deviations from steady state. 
For instance, if a, is the number of molecules in a small 
region of space located at  position r,, then u,, is pro- 
portional to the density-density correlation function. 
It is this function that determines the static light 
scattering spectrum.34 The remaining quantities in eq 
11 are the matrix y, which is defined by eq 10; H, the 
linearized matrix of the average kinetic equations (cf. 
the electrochemical example in eq 3); and HT, the 
transpose of H. Indeed, H i s  precisely the matrix whose 
eigenvalues determine the linear stability analysis. 

This kinetic theory of fluctuations reduces to the 
thermodynamic theory of fluctuations near equilibri- 
um,24-26 a theory which is supported by numerous 
experimental  investigation^.^^ The fluctuation-dissi- 
pation theory has been used to give an accurate 
c a l ~ u l a t i o n ~ ~  of the measured37 voltage fluctuations in 

(33) P. Langevin, C. R. Hebd. Seances Acad. Sci., 146, 530 (1908). 
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(36) J. Keizer, submitted to J. Chem. Phys. 
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the far-from-equilibrium Gunn instability and is further 
supported by work on the thermodynamic limit of the 
master equation theory of  fluctuation^.^^ 
Liapunov Stability and Fluctuations 

The local equilibrium entropy theory of stability18120 
fails because it is not associated with a second law type 
maximum principle away from equilibrium. Indeed, if 
the spirit of Boltzmann’s work is correct, one should 
seek the Liapunov stability principle first and then let 
the thermodynamic functions rest on this basis. 

The key to obtaining a Liapunov function at  steady 
states6 comes from the fluctuation-dissipation theorem 
in eq 11. According to linear stability analysis14 a 
deviation around steady state of the extensive variables 
will, as in eq 2, evolve in time according to 

da,/dt = CH,,a, (12) 
I 

where a, = n, - nJ” the deviation from the steady state. 
When the eigenvalues of H have negative real parts, the 
steady state is stable. On the other hand, eq 11 is 
known6 to generate a Liapunov function for eq 12. In 
fact, when y is a positive definite matrix, a necessary 
and sufficient condition for the steady state to be stable 
is39 that eq 11 have a positive definite solution matrix 
u. Actually, it is easy to understand this result in words: 
the matrix u is related to the spread of the Gaussian 
distribution of fluctuations at steady state. Fluctuations 
are caused by molecular motions which are constantly 
exploring the neighborhood of the steady state. If a 
steady state is stable, the fluctuations will spread out 
within a fixed domain and u will be finite. On the other 
hand, if the state is unstable, the fluctuations will not 
settle down near the steady state, the width of the 
probability distribution will tend to infinity: and eq 11 
will have no solution. 

This relationship between stability and fluctuations 
can be seen in an elementary manner when fluctuations 
in only a single variable are significant. As an example, 
consider voltage fluctuations for the redox electrode 
discussed in the introduction. For this model all the 
quantities in eq 11 are scalars (e.g., H = HT, a number), 
and the equation is easily solved: 

u = ( ( 6 ~ ) ~ )  = -7/2H 

This shows that the width of the voltage fluctuations, 
as measured by d2, is inversely proportional to H1i2. 
But according to the linear stability analysis (cf. eq 3), 
H i s  negative for stable steady states and positive for 
unstable steady states. Consequently, for a stable state 
the width, u1/2, exists and is positive. However, as the 
external resistance is tuned toward the unstable points 
(Le., the maximum or minimum in Figure 2), H ap- 
proaches zero. The preceding formula then shows that 
the width of the voltage fluctuations approaches infinity 
and that eq 11 has no solution. 

(37) S. Kabashima, H. Yamazaki, and T. Kawakubo, J.  Phys. SOC. Jpn., 
40, 921 (1976). 

(38) The references here are extensive. Some of the key ones are: N. 
G. van Kampen, Can. J .  Phys., 39, 551 (1961); D. McQuarrie, J.  Appl. 
hob . ,  4,413 (1967); I. Matheson, D. F. Walls, and C. W. Gardiner, J.  Stat. 
Phys., 12, 21 (1975); R. Kubo, K. Matsuno, and K. Kitahara, Lbrd., 9, 51 
(1973); T. Kurtz, J.  Appl. Prob., 7,49 (1970),8,344 (1971); T. Kurtz, J .  
Chem. Phys., 57,2976 (1972); I. Oppenheim, K. Shuler, and G. Weiss, zbzd., 
50,460 (1969); J. Logan and M. Kac, Phys. Rev. A,  13,458 (1976); J. Keizer, 
J.  Math. Phys., 18, 1316 (1977). 

(39) P. Lancaster, “Theory of Matrices”, Academic Press, New York, 
1969, Sections 8.5-8.7. 
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The voltage fluctuations near the Gunn instability 
have been examined36 by means of an analysis related 
to this. The Gunn instability occurs when an external 
current of the order of 1 A is applied across a thin 
crystal of GaAs. The current produces an electric field 
of about 4 X lo3 V/cm and leads to microwave oscil- 
lation when the field exceeds a critical value. Mea- 
surements of the voltage  fluctuation^^^ across GaAs 
have verified that their distribution is Gaussian and 
that the width of the Gaussian increases rapidly as the 
point of instability is reached. This agrees qualitatively 
with the results described above. The detailed cal- 
culations applied to the elementary process of electron 
diffusion give results which are in quantitative agree- 
ment with e ~ p e r i m e n t . ~ ~  
The u Function 

in the preceding section is that the quadratic form 
A consequence of the mathematical results described 

4 = Ca,u,j-laj (13) 

is a Liapunov function for the steady state,6 where the 
superscript -1 means the inverse matrix. This result 
is a generalization to many variables of the Liapunov 
function u 2 / u  for the redox electrode instability in the 
introduction. The important point, however, is that this 
particular quadratic form is related to the static 
fluctuations around steady state. Indeed, their dis- 
tribution has the Gaussian6 form 

1~1 

“(a) - exp(- (1/2)CalolJ-’aJ) (14) 
1.l 

These fundamental formulas are completely analogous 
to the results which hold at  equilibrium. At  equilibrium 
eq 13 reduces to the fact that the second differential 
of the entropy, is a Liapunov function and eq 14 
becomes the Einstein formula 

We(a) - e ~ p ( 6 ~ S / 2 h ~ )  

where the superscript e means equilibrium. 
To complete this analogy, it was necessary to find a 

function of state which had a second differential 
proportional to the expression in (13).6,40 Such a 
function, called the u function or I;, does exist and can 
be defined by the differential equation 

a 2Z/an,an, = -kBuGJ-’ (15) 
Notice that this relationship involves second, rather 
than first, derivatives as are used to define the entropy 
a t  equilibrium. A relationship analogous to eq 15 holds 
for the entropy a t  equilibrium, and in order to combine 
equilibrium and nonequilibrium states within a single 
definition, the use of second differentials appears to be 
necessary. Moreover, when defined in this way, eq 13 
and 14 imply that 6 2  is a Liapunov function and that 
the probability distribution is given by 

W(a) - e ~ p ( 6 ~ 2 / 2 h ~ )  
To ensure that the definition in eq 15 is proper, it 

must be shown that this differential equation is con- 
sistent. This requires that it can be solved and that the 
u function reduce to the local equilibrium entropy at  
full equilibrium. In taking care of these technicalities 
i t  is necessary to give consideration to a new collection 

(40) J. Keizer, J .  Chem. Phys , 69, 2609 (1978). 

of variables on which steady-state thermodynamic 
functions will depend.3s For example, the steady states 
of the redox electrode considered in the introduction 
require a knowledge of the current imposed by the 
external circuit. More generally, there will exist inputs 
or fluxes, f ,  of mass, energy, and momentum which 
characterize the steady state, as well as other external 
parameters, R, such as the temperature of reservoirs, 
which are relevant to maintaining the steady state. The 
resulting integration of eq 15 produces the u function 
whose functional dependence can be written40 

Z(n;f,R) = S(n) + EfJvJ(n;f,R) (16) 

Since at  equilibrium all the fluxes, f , ,  vanish, eq 16 
shows that a t  equilibrium Z becomes the local equi- 
librium entropy. The functions u,, which are new in- 
tensive variables, arise because of nonequilibrium 
contributions to the fluctuations a t  steady state. The 
a function is a generalization of the local equilibrium 
entropy and has properties near steady state which are 
analogous to the properties of the entropy near equi- 
librium. 

For a number of systems whose kinetic equations are 
linear, the u function has no nonequilibrium contri- 
bution.6 These include certain models of membrane 
transport and the generalized free-energy transduction 
mechanisms considered by Hill.41 However, for linear 
systems with additive inputs or those with nonlinear 
kinetics-which, therefore, have interesting nonequi- 
librium behavior-the nonequilibrium contributions are 
vita1.6,40y42 These results clearly demonstrate that the 
simple extension of the Einstein formula to nonequi- 
librium steady states lacks generality.18,20 

The variables which are  onju jug ate"^^ to the extensive 
thermodynamic variables at  steady state can be ob- 
tained from 2. They are defined 

4l  = a 2/arz, = aS/an, + CfJa vJ/arz, (17) 

These quantities are intensive variables and provide a 
nonequilibrium thermodynamic generalization of 
chemical potentials, temperatures, and other of the 
usual intensive thermodynamic quantities. It should 
be noted that the u function is an extensive variable,40 
just like the entropy. In fact, the extensive variables 
are the so-called “natural variables” for the entropy 
because its dependence upon them produces a complete 
set of thermodynamic information. Similarly the 
natural variables for I; are the usual extensive variables, 
n, the extensive fluxes, f ,  and (possibly) intensive 
reservoir variables, R. Because I; is an extensive 
variable, it is possible to derive a Gibbs-Duhem-like 
relationship between the intensive variables q$, a 2/afi, 
and R,. Finally, it is possible to reexpress the u function 
in terms of some of these intensive variables, just as one 
might use the entropy as a function of temperature and 
pressure a t  equilibrium. This is purely a matter of 
convenience. 
The Maximum Principle at Steady State 

In equilibrium thermodynamics the Second Law 
implies that the entropy is maximized a t  equilibrium 

1 

.l 

(41) T. L. Hill, “Free Energy Transduction in Biology”, Academic Press, 

(42) J. Keizer, J .  Chem. Phys., 67, 1473 (1977). 
(43) H. B. Callen, “Thermodynamics”, Wiley, New York, 1962. 

New York, 1977. 
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for an isolated systema2 Similarly if a system is in 
contact only with a heat bath, the Helmholtz free 
energy of the system is minimized if the temperature 
of the system is maintained at  the temperature of the 
bath. Other extremum principles are valid for other 
types of external environments a t  equilibrium. Indeed 
all of these results can be summarized using Massieu 
functions for the system of interest. These functions 
are Legendre transformations of the entropy40 of the 
system and the general result is that the Massieu 
functions achieve their maximum at equilibrium under 
the appropriate interactions with reservoirs. 

It should be clear that the CT function, being a gen- 
eralization of the entropy, is not maximized at  steady 
state since steady states involve contact with the 
outside. However, it can be shown that the appropriate 
Legendre transforms of the CT function are maximized 
a t  steady state. Here the importance of external fluxes 
and reservoirs becomes apparent since changes in which 
these quantities are fixed must be considered. 

Using eq 16 and 17, the time derivative of Z can be 
calculated to be40 

dZ/d t  = C 4Jdn,/dt 

when f and R are fixed. It can be shown that the sign 
of this expression can be positive or negative, so the CT 
function is not maximized at  steady state. Indeed, what 
is needed for a system in contact with the environment 
is a generalization of the Clausius inequality2 

J 

dS/d t  - (dQ/dt)(l/T)R 2 0 
where dQ/dt is the heat flux. This inequality, it will 
be recalled,2 is valid for a reversible or irreversible 
process involving a reservoir a t  temperature TR. A 
generalization of the Clausius inequality can be gotten 
from the second differential of the CT function. A direct 
consequence of its definition is that40 
(1/2)ds2Z/dt = E$JdnJ/dt - C$?dn,/dt L 0 (18) 

Finally, using eq 16, this can be written 
J J 

dI;/dt - C4?dnJ/dt 2 0  (19) 
J 

Equation 19 is the generalization of the Clausius ine- 
quality and permits the proof that Legendre trans- 
formations of Z are maximized at  steady state. 

To  see this, consider a process which fixes the in- 
tensive variables 4J at their steady state value as well 
as fixing the fluxes, f, and reservoir variables, R. Under 

these conditions eq 19 becomes40 
d(Z - C$,nj)/dt 1 0  

i.e., the Legendre transformation of the CT function, Z 
- Cj?jn,, is an increasing function of time, achieving its 
maximum at  steady state. 

The maximum principle requires that the intensive 
variables 4J are maintained at their steady-state values. 
But +J is a function of the extensive variables, the 
fluxes, and reservoir variables-the latter two of which 
are fixed. Thus the q5j can remain unchanged only when 
certain changes in the extensive variables cause no 
change in all the 4j. This is similar to what happens 
at  equilibrium where chemical reactions proceed a t  
fixed temperature and have the effect of minimizing the 
Helmholtz free energy.2 Similarly, a t  steady state, 
processes like internal relaxation of solvent molecules 
can occur a t  fixed values of the intensive variables, 
fluxes, and reservoir variables and would lead to an 
increase in the Legendre transformation of Z 4 O  

Conclusion 
The theoretical developments outlined in this Ac- 

count present an attempt at generalizing classical 
thermodynamics so that it is applicable a t  nonequi- 
librium steady states. The approach is based on mo- 
lecular fluctuations and leads to a theory which is in 
close correspondence to the classical theory. The basic 
idea is that fluctuations determine the stability of a 
system through the fluctuation-dissipation theorem and 
that the resulting Liapunov function has a thermo- 
dynamic significance. The development shows how new 
nonequilibrium variables, such as fluxes, need to be 
incorporated a t  steady state and gives rise to a sys- 
tematic description of maximum principles. 

At steady states the CT function, which generalizes the 
entropy, depends on nonclassical thermodynamic 
quantities, such as rate constants. This means that at 
steady states more detailed molecular information is 
available in the thermodynamics than at  equilibrium. 
The theory is firmly based in macroscopic measure- 
ments since all the quantities of the theory can be 
determined by the measurement of fluctuations at  
steady state. As these measurements become more 
common and more sophisticated, the theory outlined 
here should come to be useful. 
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